
Getting the System Sizing Steve Hazeltine and Andrew Johnston Page 1
and Performance Test Right © Sema Group Plc. 31 December, 1999

Getting the System Sizing
and Performance Test Right

Steve Hazeltine - Sema Group Systems Ltd. (now Oracle UK Ltd.)
(Email shazelti@uk.oracle.co - Telephone +44 171 830 4444)

Andrew Johnston - Independent Consultant and Sema Group Associate
(Email andrewj@compuserve.com - Telephone +44 1483 283408)

1. Introduction

This document describes how we specified the Sun server required for the ported Rental
Systems at Livingston UK. Livingston is the European leader in providing services to users of
electronic equipment and computers. A primary business activity is the rental of electronic
equipment and computers, much of which is conducted over the telephone, so response times
are key to the business. We therefore had to be sure that the new system would perform at least
as well as the old one without wasting money through over-specified hardware.

The exercise was a complete success. We were able to reduce our original hardware estimates
by over £200,000 from the manufacturer’s recommendations, and from day one the system was
faster than its replacement. The observed CPU and memory usage figures demonstrate that we
procured exactly the right specification for the client. Our approach had a number of additional
benefits to Livingston, including being able to accurately predict, and thus reduce, the number
of Oracle licenses required.

The key to the success was:

• understanding the importance of performance to the client, and constructing an approach
which met their needs,

• taking measurements from the old system to generate the real user requirements and
transaction volumes,

• experienced staff using this data to select the required platform,

• using a combination of a simulator and live users to provide a realistic performance test, to
validate our approach before proceeding to live running.

Because it relies on having an existing system in place, this approach is not applicable to every
situation. Today, however, the replacement of an old system is probably more common than the
creation of a completely fresh application, so we hope our experiences will be of some use to
others.

2. Approach to Specifying the Hardware

There are a number of approaches to hardware specification, including:

• approximate sizing based on the number of users, and the recommendations of hardware
manufacturers,

• transaction processing and other benchmark based sizing,

Getting the System Sizing Steve Hazeltine and Andrew Johnston Page 2
and Performance Test Right © Sema Group Plc. 31 December, 1999

• comparison with similar existing systems,

• prototype based benchmarking.

The choice of approach should be based on:

• understanding the various options,

• the cost of estimating the size of the platform,

• the risks to the supplier and client of mis-sizing the platform.

Cost is important. A prototyping exercise is not cheap, and for a small number of users it may
be better to make an approximate sizing calculation and over-specify the hardware. Users rarely
complain about a system running too quickly.

For a larger system, the risks need to be understood, and their cost evaluated. If an external
supplier is involved, both parties need to be clear on who will bear the cost if the risks
materialise. These could include:

• the cost of a hardware upgrade, particularly significant if the selected model is at the top of
a range,

• cutting back to the original system, and repeating the system implementation,

• consequential loss of business and client’s image,

• loss of faith in the project by users, who may not be willing to give the IT department or
supplier a second chance.

We had the following situation:

• performance was critical to sales users,

• cutting back to the old system would have caused immense disruption to the business, with
potential loss of sales,

• previous experiences had been very painful, both for individuals and the business,

• we had conflicting signals from our initial assessment of the transaction rate (which
suggested quite a small system), and the advice of the hardware manufacturers based on
the number of users, which suggested a very much larger system.

We had to get it right first time, and it was clear we could not rely on previous experience and
manufacturers’ data alone, so a prototype based approach was selected. The process we adopted
is summarised in the figure below:

Measure Load and
Performance of
Existing System

Measure performance
and resource usage of

key transactions in
prototype

Calculate required
CPU, memory and disk

for live platform
Select Live Platform

Validate choice with
repeated

measurements and
formal performance test

Getting the System Sizing Steve Hazeltine and Andrew Johnston Page 3
and Performance Test Right © Sema Group Plc. 31 December, 1999

3. Measuring the Transaction Load

3.1 Identifying the Key Transactions

We started the sizing exercise with very little reliable data:

• The number of concurrent users was high (potentially > 100), which suggested a large
system,

• The number of enquiries and orders processed per day was relatively low, suggesting a
much smaller system.

We therefore realised we had to find some key indicators which would allow us to specify the
performance much more accurately, with the following characteristics:

• The old and new system architectures were entirely different (moving from a proprietary
database on Data General hardware running AOS/VS, to an Oracle7 database running
under Unix). Therefore low-level figures related to physical system attributes (e.g. %CPU
loading) could not easily be compared between the architectures.

• Very high-level business transactions (such as the number of new orders per day) would be
useful in comparing total volumes of business, but not much use for measuring subjective
performance which is related to individual processing actions.

• The key transaction timings would have to be meaningful (to allow them to be related to
the users’ requirements), and accurately and easily measurable (for an exactly comparable
process) on both the existing and ported system.

• We would not have a complete ported system until quite late in the project, so we would
have to size the system using a relatively small subset of the transactions.

• The transactions would have to be typical of live usage. In most systems, a small group of
functions are used most of the time, and these should form the basis of the prototype.
Furthermore, you need to simulate a representative mix of read and write accesses, across
a representative section of the database and disk.

Fortunately, we identified a small group of transactions (a cycle through from a sales enquiry to
order confirmation) which were supported by the early pilot of the porting exercise and which
satisfied these criteria very well. The cycle contained key transactions for which the users had
specified target response times: product queries, customer queries, and the time taken to finish
processing a confirmed order. The same enquiry screens could generate query-only
transactions, allowing the mix of query and update accesses to the database to be controlled.

3.2 Measuring the Existing Usage

We started by verifying the number of active users on the system. An initial manual assessment
(walking around at a busy time with a clipboard) suggested that the number of users actively
loading the system was a very small percentage of those logged in:

Getting the System Sizing Steve Hazeltine and Andrew Johnston Page 4
and Performance Test Right © Sema Group Plc. 31 December, 1999

Activity No.
In Screen & Active 6
Screen (Passive) 11
Screen (Inactive) 15
At Menu 20
Operators/testers 9
Total 61

We tried to distinguish between those users obviously working from the data on the screen
(passive) and those where the system had been left sitting in a screen but there was not
obviously anyone using the data, or there was no data on screen (inactive). Allowing for errors,
the number of active (and passive) screen users was around 17 ± 4 (out of 60+ logged on). This
could not only account for the conflict between the initial estimates, but would also suggest
much lower licensing and memory requirements. However, the figures were perhaps too low to
be believed, and needed to be confirmed more scientifically.

We also needed to measure the numbers of each key transaction and the actual performance
delivered by the old system. A short attempt at using manual measurements proved only that
the transaction timings varied considerably, and the mix of transactions in the system was much
broader than we had been lead to believe, so we could not just generate enquiries and order
confirmations and hope this would mimic live use.

Fortunately the Data General system provided a rather elegant solution to our problems, in the
form of an optional log of all screen activity for each user session during a time period. We
could then replay these logs and observe both what the users had been doing, and the times
taken for key transactions. Similar mechanisms exist in most operating systems, or can be
simulated using standard test tools.

The only remaining problem was the volume of data this would generate. In the end we used
our test tool (see the next chapter) to automate replaying the logs and to assess which function,
on which screen, each user was performing. All such combinations were classified as a
database read, database update, or “ignored” action (such as navigation from screen back to
menu). As we replayed the logs the time stamps were used to both time key transactions and
assess when user sessions were left inactive for a period of time.

The figures from these measurements broadly supported the earlier estimates, but with a few
interesting aspects:

• There was a wide variation in the areas and functions used, with no obvious “80-20” rule,

• The number of “active” users was slightly higher than the manual measurements had
suggested, but still less than half those logged on at any time,

• Database query actions outstripped those which would generate an update by a factor of
around 2.5:1,

• Most key transactions on the old system were completed within the target times, but with
quite a wide variation.

3.3 Establishing the Real Targets

Having established an accurate analysis of the number of transactions of various types
throughout the day (on a few chosen days), we then had to set the targets for the new system.
There were a number of adjustment factors which each had to be taken into account:

Getting the System Sizing Steve Hazeltine and Andrew Johnston Page 5
and Performance Test Right © Sema Group Plc. 31 December, 1999

• Growth - we had to size the system to allow for a few years in a growing business,

• Other uses - we had to consider the increased system loading which might come from the
introduction of more flexible reporting tools, better interfaces with the OA software,
possible access from other European sites, network management and system monitoring
and a number of other such changes,

• Operator and developer activity - command line sessions were not captured by the logging
tool,

• Business volume - the measurements were taken during a “quiet” month in business terms
(a normal seasonal variation due to summer holidays). We couldn’t wait for business to
pick up, but we could compare the number of orders being processed on the measurement
days with the peak values from a few months earlier,

• Greater spread of functions - we could only simulate a subset of transactions, and a greater
spread in reality would undoubtedly decrease performance due to, for example, reduced
data cacheing,

• Losses in the measurement process - for example, we had to break the logging down into
one hour sessions, and lost about seven minutes resetting the system before continuing
with the next. This inevitably disturbed the analysis of things like inactive sessions and the
daily totals of transactions,

The worst-case number of active users was calculated as follows:

Peak from Automated Measurements 21
Add maximum error on measurements 4
Add 60% for business volume adjustment 15
Add 2 for operator/developer access 2
Maximum Concurrent Users 42

We also decided that the new server would have to support a load equivalent to roughly 3700
query transactions per hour, derived as follows:

Maximum load observed in tests 1276
Allow 10% for measurement errors 128
Add 20% for operator/developer access 255
 Subtotal 1659
Business adjustment (ratio of measured
business to past peak) of 50% gives 2488
Allow growth factor of 50% to give 3732
Target query transaction rate 3732

From the observed split between query and update transactions, we noted that the test load
would have to include at least 1500 update transactions per hour. The requirement was that at
this level, 90% of product and customer queries and 90% of order confirmations should
complete within the defined targets. Our measurements also confirmed that these would be a
small improvement compared with the existing system.

4. Building and Measuring the Prototype

In order to run a prototyping/benchmarking exercise of this sort, you have to do several things:

Getting the System Sizing Steve Hazeltine and Andrew Johnston Page 6
and Performance Test Right © Sema Group Plc. 31 December, 1999

1. Choose, source and set up the hardware,

2. Choose and develop / set up the test tools,

3. Develop or port key parts of the target system,

4. Measure the performance of the prototype,

5. Specify the real platform,

6. Plan and run the performance tests.

You may be constrained by decisions which have already been made. In our case, these
constraints existed but actually made the job slightly easier. It had already been decided that the
target system would be a Sun server, running Solaris and Oracle7, because of Sema Group’s
previous good experience of this environment and Livingston’s business relationship with Sun.
Furthermore, the porting exercise was already under way, so we had part of the system, albeit
incomplete and partially tested, to work with from a very early stage.

4.1 Choosing the Prototype Environment

You have to have access to adequate hardware and software to make the exercise meaningful.
There are various obvious sources: development equipment, sale or return agreements, and
loans from the manufacturers may be feasible, but purchase is probably the last option. Given
the nature of our client, we went for the other obvious solution - rental. This is a very good
solution and allows the exploration of a number of options, within limits.

Unless your test environment is exactly what you plan for live use, you then have to decide
what is reasonable to extrapolate from these tests, and what should not be extrapolated. In our
case, we knew that we would be using the same CPU architecture and we were confident that
we could use the manufacturer’s CPU performance figures to compare one model with another.
On the other hand, we had decided for resilience reasons that the live system would use a RAID
disk array, but none was available for us to test. Since we were confident the system would not
be disk bound we decided to risk extrapolating figures from a different disk architecture, but
this might not have been wise in a disk-bound system.

You also need to provide a sufficient platform to run the test tool(s) themselves. As well as a
Sun SparcStation running the target application, we needed 4 Pentium PCs running Windows
95 dedicated to controlling the tests, simulating the load and storing the results. As a general
rule you should try to avoid test tools which run on the target machine itself unless you are
confident you can assess their own impact on performance.

4.2 Choosing / Developing the Test Tools

The choice of test tools varies with the application. We identified a number of key requirements
related to our situation:

• The application was presented through a character-mode terminal emulator under
Windows, so our test tool had to work with that environment,

• To allow variations in the tests depending on the response of the target system, the test tool
had to include a scripting language of some sort,

• The tool had to be able to interpret the screen of the terminal emulator as an 80*25 array,
not just a text control with a string in it,

• Given the large volume of data, the tool had to be able to write results away to structured

Getting the System Sizing Steve Hazeltine and Andrew Johnston Page 7
and Performance Test Right © Sema Group Plc. 31 December, 1999

storage, ideally a PC database,

• We would have to be able to run several test sessions simultaneously from a single PC, to
make running a sufficient number of simulated sessions practicable.

Surprisingly, we could not find a commercial test tool which met these requirements. The main
problem seemed to be the ability to interpret text within a terminal emulator window, but the
ability to write results to a database was also lacking in many options we looked at.

Thus we decided to write our own! While this should not be undertaken lightly, in our case it
turned out to be a very effective solution. We used Visual Basic, which could use DDE to
communicate intelligently with the emulator, could write its results directly to an Access
database, and used Windows messages to synchronise between different test processes. The
initial scripts we wrote to interpret the logs from the Data General provided most of the core
functions to decide what the application was doing, and it was then quite simple to join these
together with new code driving the application itself.

We also developed a related tool to capture keystrokes and commentary text, so that experts on
the application could develop the framework of each test without needing any expertise with
the test tool itself. We found that a test cycle covering about 10 screens could be recorded and
developed into a working test routine in about 1-2 days.

Since (with the level of automation) it was easy to do so, we repeated the performance tests on
several occasions: when the chosen live platform became available, with various specification
client PCs, and when the ported system was functionally complete. This built up confidence in
our decisions, and pointed the way to some performance improvements in the application, and
the correct client PC specification.

4.3 Measuring the Performance of the Prototype

The performance load simulation was a routine which drove the ported application in a
repeating cycle of enquiry, order confirmation, some general enquiries, deleting the previously
created order, and some more general enquiries. The cycle, various product and customer
searches, and the order confirmation process were each timed and results written to the results
database. Analysing this routine in the same way as the existing system showed that each cycle
generated 54 query transactions and 23 updates.

The test PC could drive up to eight “threads” - sessions on the target system. There were four
parameters which affected the actual load generated:

• Number of test threads,

• The “Short Delay” - a delay of a few seconds inserted between each group of a few
keystrokes to simulate natural operator entry speed (and allow the system to respond),

• The “Long Delay” - a maximum delay (in seconds) between repetitions of the cycle,

• Number of repetitions - this mainly affected the duration of a test to make sure that the
results were statistically viable.

By varying these factors we could simulate widely varying test loads. The behaviour of the
prototype system was then assessed using three factors:

• The number of query transactions per hour (derived from the average order cycle time and
the number of threads running),

Getting the System Sizing Steve Hazeltine and Andrew Johnston Page 8
and Performance Test Right © Sema Group Plc. 31 December, 1999

• Whether the timed transactions completed in a satisfactory time,

• Whether the target Unix host’s performance monitoring tools reported saturation of CPU
and/or disk I/O.

The following table summarises the results of our prototype test against our development
SparcStation (a 110MHz Sparc 5):

Test
Run

Number
of
Threads

Short
Delay

Long
Delay

Cycle
Time

Query Tx
per Hour

Product
Search

Customer
Search

Order
Confirm

CPU
Usage

927 1 1 60 00:02:41 1207 1.3 0.3 3.6 20-35%
933 2 1 60 00:03:42 1751 1.5 0.3 5.0 40-70%
928 2 3 60 00:05:43 1134 1.7 0.2 3.6 30-60%
932 2 5 60 00:07:59 812 1.5 0.2 4.3 10-50%
931 3 3 60 00:06:17 1547 1.8 0.3 5.4 40-70%
930 4 3 60 00:07:10 1808 2.3 0.4 4.9 50-80%

The disk I/O rarely exceeded 15% of maximum throughout all the tests, but the 3 and 4 thread
figures showed CPU usage approaching saturation, and the 4 thread figures showed search
times starting to exceed the target. From this we concluded the following:

• performance should not be disk bound, but we were probably getting unrealistic data
cacheing and would need a better spread of functions in the final performance test,

• The SparcStation 5 could support up to about 1750 transactions per hour (keeping machine
usage and transaction times within targets), so the CPU of the live machine would have to
be about 2.5 times this powerful.

5. Specifying the Live Platform

The aim is to produce a platform specification in terms of model number, number and speed of
CPUs, memory size, disk architecture and capacity. The inputs to this process are:

• the CPU, memory and disk resources consumed by the prototype,

• the transaction load and response times supported by the prototype,

• the required response time and transaction load,

• resilience requirements (which may dictate extra CPU or memory capacity, or a certain
disk architecture),

• memory and disk sizing guidelines from hardware and / or database suppliers.

The following sections provide some guidelines, especially for processor sizing, based on our
experiences.

Getting the System Sizing Steve Hazeltine and Andrew Johnston Page 9
and Performance Test Right © Sema Group Plc. 31 December, 1999

5.1 Identifying the Bottlenecks

You must review your prototype to ensure that there are no exceptional circumstances, such as
the database being very poorly tuned, or the test hardware being so short on memory that
swapping and paging occurred at very low loads. If the test hardware can comfortably support
the expected live load, you may be able to reduce the specification. Otherwise, you will have to
identify the bottlenecks in performance, and hence decide what needs to change:

• With a lightly loaded machine running only a few transaction types (where most data will
be cached) the response time represents the time for one processor and the disks to
complete one transaction. You should see little disk read activity, and CPU activity
roughly proportional to the transaction load. Increasing the number of processors will not
improve the individual response times, but increasing individual processor power/ speed
will. In practice, available processor speeds typically vary by less than a factor of 2:1 at
any one time. Therefore, if the response time of a lightly loaded prototype is inadequate,
the cure is to modify the software design, not to expect great improvements from faster
hardware.

• If as the load increases, the disk activity remains acceptable, response times will increase
as the probability of any one process having to wait for other active processes increases. If
the processor load gets too high (generally above 75-80% on most Unix systems) excessive
swapping will cause the response to worsen dramatically. The onset of this can be delayed
by faster or additional processors.

• If disk performance is the bottleneck, this will show itself either as an inability to fully
load the CPUs when running a higher transaction load, or a dramatically worsening
response as the mix of transactions is increased to reduce cacheing. You may need to look
at alternative disk architectures, very much more memory (to extend the effects of data
cacheing), or software optimisation.

• If under the same circumstances paging activity becomes very high then the system is
memory bound. You will have to specify a larger amount of memory for the real system,
and extrapolate from more lightly loaded figures. Alternatively, memory is one resource
which you should be able to rent or borrow to check the effects of a larger quantity. It is
usually a false economy to under-specify the memory on a machine where the CPU and
disk can support better performance.

In our case, we found that disk and memory activity were acceptable up to the limit of the
transaction load our test machine’s CPU could support. We were therefore able to specify the
live machine as a proportional increase in CPU and memory capacity, with a disk architecture
derived from the resilience requirements.

5.2 Selecting the Processor(s)

The following shows how to:

• select a processor speed that ensures that a lightly loaded machine will give an adequate
response time,

• calculate how many processors you need to support the expected peak transaction load.

We use the following terms:

cp CPU rating (e.g. clock speed) of the prototype’s processor

cr CPU rating (e.g. clock speed) of the live processor

Getting the System Sizing Steve Hazeltine and Andrew Johnston Page 10
and Performance Test Right © Sema Group Plc. 31 December, 1999

fc Adjustment for the effects of a real load compared with the higher cacheing of a
typical simulated load

P Number of processors in the server

rp measured prototype response time of the most critical transaction (e.g. with the
slowest execution speed)

rr required response time of the same transaction in 90% of cases

tp transaction load supported (at <80% CPU Loading) by the prototype

tr peak transaction load predicted for the live system, including any growth or
adjustment factors

You can make an initial estimate of the required processor power/speed as:

c
c r
rr

p p

r

 >=
11.

The factor of 1.1 allows for an expected increase in average response time when the processor
has a reasonable (40%) loading. If a processor of this speed/power is not available, the remedy
lies in changing the software, not in hardware.

The required number of processors is then given by the ratio of the peak transaction rate to the
transaction rate supported (at a reasonable CPU loading) by the prototype:

P
f c t
c t
c p r

r p

 >=

This gives the (fractional) number of CPUs that would be fully loaded by the system. fc is a
factor to allow for non-key transactions not included in the prototype, and other aspects which
will make the real transaction mix more heterogeneous than simulated in the prototype.

In our case, we found that a small number of transactions accounted for around 60% of the
load, and treated the remainder as being equivalent in total to the main sales enquiry
transaction. Thus we estimated a value of 1.5 for fc.

The next step is to compare potential processor configurations from the manufacturer’s
literature that will meet the performance goal. For each potential configuration, you should use
the above equations to check that the response time will be acceptable and the supported peak
transaction rate adequate:

11. c r
c

rp p

r
r<= and

c t P
f c

tr p

c p
r>=

Given a range of acceptable alternatives, your final choice will then be based on:

• price,

• relative expected response times,

• likely transaction load growth over the project lifetime.

Getting the System Sizing Steve Hazeltine and Andrew Johnston Page 11
and Performance Test Right © Sema Group Plc. 31 December, 1999

Our Project Experience

In our project, we had already decided on Sun Microsystems as the hardware supplier.

The measurements on the existing system showed two peak loading times: around 10-12 noon
when sales activity was at a peak, and early evening when despatch was processing the day’s
orders (but sales activity was reduced). We calculated the load for both cases, and concluded
that the greatest CPU usage was in the morning. The key transaction for response time had been
identified as a product enquiry.

The prototype measurements and above calculations showed that:

• the minimum individual CPU power could not be less than 75% that of a 110Mhz Sparc 5,

• the total CPU power should be at least 2.5 times that of the 110Mhz Sparc 5.

This immediately allowed us to consider the less expensive Sparc 20 range rather than the more
expensive Sparc 1000 (capable of taking significantly more processors). Without the prototype,
we would not have been able to make this economy with confidence. There were three main
options:

1. two 50MHz processors

2. four 50MHz processors

3. two 70MHz processors

Of these, the loading for the 2x50MHz configuration was too high for comfort. A 4x50MHz
unit would have been able to support increased throughput, and therefore support greater short-
term organisational growth, but the 2x70MHz option offered better response times, with better
expansion potential in the medium to long term. The decision was therefore taken to procure
that configuration, as a fast response time in the short to medium term was more important than
short-term growth. This would support the business better, even though it had a lower
specification in simple Specmarks.

5.3 Memory Sizing

The guidelines for memory sizing are usually related to the number of users. As we noted
above, many of the users on the old Livingston system were logged in for long periods but
performed relatively few transactions. We could therefore use as a basis the measured number
of active, rather than concurrent users. Armed with this number we started with the standard
guidelines for a typical Unix/Oracle installation:

Source Memory (Mb)
Unix 32
Live database: 40 active users @ 3Mb each 120
Test database 16
CQCS 4GL: 40 users @ 0.5Mb Each 20
TOTAL 188

From experience, we were aware that memory size is critical in Oracle performance, and any
extra memory would be useful. We also had to allow for growth and other processes (such as
monitoring software). We therefore decided to buy 256Mb of RAM, safe in the knowledge that
if this was substantially over-specified any extra could be deployed on another installation.

Getting the System Sizing Steve Hazeltine and Andrew Johnston Page 12
and Performance Test Right © Sema Group Plc. 31 December, 1999

Where a decision like this is borderline, but good performance is essential from the outset, the
rental option is very practical. Extra memory can be rented, and the system should go live with
this additional memory in place. Use the performance measuring tools to decide if the memory
is being used. If not, return the excess to the rental company. If it is needed, extend the rental
until new memory can be bought. This guarantees performance at a much lower cost than
outright purchase.

5.4 Specifying the Disks

Sizing the Disks

Disk sizing is covered in standard texts and manuals (e.g. the DBA guide for Oracle), and will
not be covered here, except for a couple of salutary tales:

Our first estimate of disk sizing was based on two good numbers: an estimate based on the
known numbers of rows in each table in the old system, with a factor of three for indexing; and
some knowledge of the disk sizes in the old Data General system. We were therefore rather
surprised to find that the first-cut import into Oracle occupied over three times this volume of
disk, or almost ten times the size of the raw data. This was due to a number of factors:

• A very denormalised data structure,

• Larger archive tables than we had been led to believe,

• A data structure enforced by the 4GL in which most fields in the database were of fixed
length and “NOT NULL”, even if usually empty. Most of our new database was empty
space!

This type of problem is rather insidious: it can happen by default as the result of a low-level
decision outside your direct control, and it will have a major cumulative effect. In our case, if
affects not only database sizing, but also performance, size and speed of backups, and so on. To
limit any risk to the porting exercise, we decided to live with the structure in the short-term, but
are now progressively making manual changes to reduce this effect.

Other factors to consider in disk sizing are the following:

• User files and application software will grow in size, no matter how good your intentions
to control them. This is particularly true in the PC arena.

• You will lose more to formatting and the operating system than you predict.

 In our case, we had decided on a RAID array for the main disks of the live system, and
found that we lost 10-20% to raw disk formatting, and another 20% to the RAID
operations, so that the available size is only about 65% of the total. Other operating
systems have different “features”, but with similar effects.

The message is simple: be generous in sizing your disks, or make sure you have an architecture
in which you can easily at least double your disk capacity if required.

Estimating the Number and Speed of Disks

To ensure performance, it is important to have enough disks of sufficient speed available.
While running the prototype, you should run a disk monitoring utility (sar or perfmeter are
adequate under Unix). You should ensure that your prototype database is sufficiently large and
choice of data sufficiently random to make the data cacheing as realistic as possible.

Getting the System Sizing Steve Hazeltine and Andrew Johnston Page 13
and Performance Test Right © Sema Group Plc. 31 December, 1999

You will need the following data from the prototype:

• disk usage (typically a percentage) during a fixed period,

• number of physical and logical reads and writes over the same period.

Look at the ratio of logical to physical reads and writes. It is reasonable for small tables and
indexes to be cached, and you are trying to tune for the best ratio possible. However, if you get
a ratio in excess of 4:1 you are probably getting more cacheing than you will see in real use.

From the manufacturers statistics you should be able to calculate the approximate time taken to
read or write a block of data, D:

D= (mean seek time) + 0.5*(rotation time) + (block size)/(peak transfer rate)

As a confidence check, you may be able to see a limit to the number of physical reads or writes
per second when the system is heavily loaded: this will be roughly 1/D.

Given the processing times Dp and Dr for the prototype and proposed live disk systems
respectively, the steps are very similar to those for processor specification.

1. Review the degree of caching in the prototype compared to the live system. To do this,
consider which tables and indexes should be cached, and refer to the code in your
prototype. Consider also how much spare memory you may have.

2. Ensure that the live system’s disk processing time satisfies (Dr/Dp) < (rr/rp), otherwise you
may have a problem with individual transaction times even if the overall transaction load
can be handled.

3. Calculate the number of disks N required to handle the peak transaction load in a fashion
analogous to the calculation of number of processors:

 N
f D t
D t
c r r

p p

 >=

 Note that because disk are mechanical devices, they are slow, and that additional disk delays
can have a very marked effect on performance. Most manufacturers recommend that disk
loading in operational systems is kept under 40%. To achieve this, we would recommend
at this stage aiming for a loading of under 25% - so take a value of tp where this is true.

4. In your database design and when setting up the system, stripe or distribute the live
database across at least N spindles, so that each is equally used, and so that none of those
disks form a bottleneck.

5. Remember to consider the reliability aspects. Note the manufacturer’s guidelines and your
standards for location of operating system software. In particular, you may want to ensure
that transaction logging uses a separate disk to ensure that the database can be recovered in
case of a disk crash. You may need to allow for separate disks for this, and you may want
to stripe it across several disks to ensure adequate throughput to the logs. However, in our
experience with Oracle one logging disk is probably sufficient unless you have a very
heavy transaction processing system.

In our project, we found that disk loading was usually very low. For reliability purposes we
went for a RAID array in which the disk seek times were adequate, and throughput from the
RAID array was much higher than we required due to the striping from the RAID 5
configuration employed. Note that because our system is dominated by query transactions, the
reduction in performance from a RAID 5 configuration is not a problem. In cases where a

Getting the System Sizing Steve Hazeltine and Andrew Johnston Page 14
and Performance Test Right © Sema Group Plc. 31 December, 1999

higher proportion of transactions are updates, other disk configurations might be more
appropriate.

6. Doing the Real Performance Test

Before live use, we carried out a performance test which would be more representative of live
operation. This was based on the automated test, but with the following changes:

• the original test cycle was supplemented by two more to exercise other parts of the system
and reduce the effects of data cacheing,

• a large number of sessions were simulated in which very few transactions were generated,
but the system was navigated from screen to screen at random to simulate the expected
“inactive” and “passive” users,

• a few users were invited performed a few transactions while the system was under load, to
verify that the observed performance was in fact acceptable.

The automated test suite was used to generate a load roughly equivalent to the predicted peak
(including an allowance of 50% for errors and growth), and four real users joined in. The
conclusion was that the system was noticeably slower than when unloaded, but very definitely
better than the Data General under heavy load, and always acceptable.

The cut-over to live operation went well, without any significant performance problems, and
was also judged a success. In live use there have been a few problems related to a small number
of rather extensive and inefficient reports, which are being addressed by making these more
efficient. In general, however, the system has performed well, despite eventually being a much
lower specification than the hardware manufacturers would have recommended from the simple
numbers of users.

7. Conclusions

We have learned a number of lessons from this exercise:

• You need to choose your approach carefully. This prototype-based exercise cost around
£20k. Offset against this were notional savings of around £200k against the original
proposals for hardware and licensing, and a very real (but less quantifiable) value in
reducing the risk to the business and the project by getting it right first time. Thus in our
case the costs were well justified. If you don’t prototype, you have two real options: over-
specify the hardware (which may not cost too much in some smaller systems), or take the
best guess from the available documentation, and manage the risk.

• Know what you need to measure, and get good first-hand measurements of all significant
aspects of any existing system and your prototype. Do not trust data which you haven’t
gathered or checked directly - as with our database sizing unforeseen factors can have
dramatic effects, particularly when comparing very different architectures.

• Concentrate on the factors which are likely to be a bottleneck in your system. In our case,
the disks were likely to be “good enough”, but we needed to get the processors right. In a
disk-bound system this would have to be reversed.

• Do make sure your prototype covers a range of uses. In hindsight, we should have built
reporting operations into ours, and we would then have identified early some aspects
which have caused problems, as well as making the cacheing and memory usage more
realistic.

Getting the System Sizing Steve Hazeltine and Andrew Johnston Page 15
and Performance Test Right © Sema Group Plc. 31 December, 1999

• Be prepared to invest in good test tools. Our approach, writing our own, should not be
appropriate or necessary in every case. However, you should define the requirements for
these tools carefully, and be prepared to be inventive to make the tools provide you with
the data you actually need.

• Do get the users involved in the performance tests. However, don’t rely on large amounts
of manual input - it’s difficult to control, and difficult to repeat. An automated test suite
will prove to have a number of uses during the development and implementation.

The method we have described worked well in our case. It is not a substitute for a documented
analysis of usage, projected growth and required performance but it is a way of deriving them
where a previous system exists. Neither does this method remove the requirement for skilled
system design, but it will reduce some of the risks if properly used. A performance prototype
like ours could be even more useful where the architecture of a system is more complicated.

Over the years, we have both seen systems fail because the sizing and performance testing were
not right. In this case, we did get it right, and hopefully this paper will help you to size your
system correctly.

	Introduction
	Approach to Specifying the Hardware
	Measuring the Transaction Load
	Identifying the Key Transactions
	Measuring the Existing Usage
	Establishing the Real Targets

	Building and Measuring the Prototype
	Choosing the Prototype Environment
	Choosing / Developing the Test Tools
	Measuring the Performance of the Prototype

	Specifying the Live Platform
	Identifying the Bottlenecks
	Selecting the Processor(s)

	Our Project Experience
	Memory Sizing
	Specifying the Disks

	Sizing the Disks
	Estimating the Number and Speed of Disks
	Doing the Real Performance Test
	Conclusions

